Documentation
API
Sym

# Sym

Symbolic Distributions. All these functions match the functions for creating sample set distributions, but produce symbolic distributions instead. Symbolic distributions won't capture correlations, but are more performant than sample distributions.

### normal

Signatures
Sym.normal(Number, Number) => SymbolicDist
Sym.normal({p5: Number, p95: Number}) => SymbolicDist
Sym.normal({p10: Number, p90: Number}) => SymbolicDist
Sym.normal({p25: Number, p75: Number}) => SymbolicDist
Sym.normal({mean: Number, stdev: Number}) => SymbolicDist
Examples
`Sym.normal(5, 1)`
`Sym.normal({ p5: 4, p95: 10 })`
`Sym.normal({ p10: 4, p90: 10 })`
`Sym.normal({ p25: 4, p75: 10 })`
`Sym.normal({ mean: 5, stdev: 2 })`

### lognormal

Signatures
Sym.lognormal(Number, Number) => SymbolicDist
Sym.lognormal({p5: Number, p95: Number}) => SymbolicDist
Sym.lognormal({p10: Number, p90: Number}) => SymbolicDist
Sym.lognormal({p25: Number, p75: Number}) => SymbolicDist
Sym.lognormal({mean: Number, stdev: Number}) => SymbolicDist
Examples
`Sym.lognormal(0.5, 0.8)`
`Sym.lognormal({ p5: 4, p95: 10 })`
`Sym.lognormal({ p10: 4, p90: 10 })`
`Sym.lognormal({ p25: 4, p75: 10 })`
`Sym.lognormal({ mean: 5, stdev: 2 })`

### uniform

Signatures
Sym.uniform(Number, Number) => SymbolicDist
Examples
`Sym.uniform(10, 12)`

### beta

Signatures
Sym.beta(Number, Number) => SymbolicDist
Sym.beta({mean: Number, stdev: Number}) => SymbolicDist
Examples
`Sym.beta(20, 25)`
`Sym.beta({ mean: 0.39, stdev: 0.1 })`

### cauchy

Signatures
Sym.cauchy(Number, Number) => SymbolicDist
Examples
`Sym.cauchy(5, 1)`

### gamma

Signatures
Sym.gamma(Number, Number) => SymbolicDist
Examples
`Sym.gamma(5, 1)`

### logistic

Signatures
Sym.logistic(Number, Number) => SymbolicDist
Examples
`Sym.logistic(5, 1)`

### exponential

Signatures
Sym.exponential(Number) => SymbolicDist
Examples
`Sym.exponential(2)`

### bernoulli

Signatures
Sym.bernoulli(Number) => SymbolicDist
Examples
`Sym.bernoulli(0.5)`

### pointMass

Point mass distributions are already symbolic, so you can use the regular `pointMass` function.

Namespace optional
Signatures
Sym.pointMass(Number) => SymbolicDist
Examples
`pointMass(0.5)`

### triangular

Signatures
Sym.triangular(Number, Number, Number) => SymbolicDist
Examples
`Sym.triangular(3, 5, 10)`